The validation of traditional Zero-knowledge systems on Ethereum is unworkable. This is due to a combination of on-chain verification gas costs, slow proof construction, and a lack of interoperability between assets. The lack of interoperability and inability for proof construction to run on a clients browser make these systems unsuitable for use in real world financial applications. One of the largest costs inside a Zero-knowledge system is the range proof. A range proof allows the prover to prove to a verifier, that a number is within a specific range. This is critically important when dealing with addition of elliptic curve points. On an elliptic curve, a negative number is in fact a very large positive number and a range proof is used to ensure that any point is within a usable range and to prevent double spend attacks by wrapping around the modulo. AZTEC’s range proof utilises a trusted setup to drastically reduce the cost of this check.